Kamis, 09 Juni 2016

Parallel Computation





1.    Parallel Concept

Komputasi paralel merupakan salah satu teknik komputasi, dimana proses komputasinya dilakukan oleh beberapa resources (komputer) yang independen, secara bersamaan. Komputasi paralel biasanya diperlukan pada saat terjadinya pengolahan data dalam jumlah besar (di industri keuangan, bioinformatika, dll) atau dalam memenuhi proses komputasi yang sangat banyak. Selanjutnya, komputasi paralel ini juga dapat ditemui dalam kasus kalkulasi numerik dalam penyelesaian persamaan matematis di bidang fisika (fisika komputasi), kimia (kimia komputasi), dll. Dalam menyelesaikan suatu masalah, komputasi paralel memerlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel.

Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi. Tidak berarti dengan mesin paralel semua program yang dijalankan diatasnya otomatis akan diolah secara paralel. Pemrograman paralel adalah teknik pemrograman komputer yang memungkinkan eksekusi perintah / operasi secara bersamaan (komputasi paralel), baik dalam komputer dengan satu (prosesor tunggal) ataupun banyak (prosesor ganda dengan mesin paralel ) CPU. Bila komputer yang digunakan secara bersamaan tersebut dilakukan oleh komputer-komputer terpisah yang terhubung dalam suatu jaringan komputer lebih sering istilah yang digunakan adalah sistem terdistribusi (distributed computing). Tujuan utama dari pemrograman paralel adalah untuk meningkatkan performa komputasi. Semakin banyak hal yang bisa dilakukan secara bersamaan (dalam waktu yang sama), semakin banyak pekerjaan yang bisa diselesaikan.

Analogi yang paling gampang adalah, bila anda dapat merebus air sambil memotong-motong bawang saat anda akan memasak, waktu yang anda butuhkan akan lebih sedikit dibandingkan bila anda mengerjakan hal tersebut secara berurutan (serial). Atau waktu yang anda butuhkan memotong bawang akan lebih sedikit jika anda kerjakan berdua. Performa dalam pemrograman paralel diukur dari berapa banyak peningkatan kecepatan (speed up) yang diperoleh dalam menggunakan tehnik paralel. Secara informal, bila anda memotong bawang sendirian membutuhkan waktu 1 jam dan dengan bantuan teman, berdua anda bisa melakukannya dalam 1/2 jam maka anda memperoleh peningkatan kecepatan sebanyak 2 kali.


2.    Distributed Processing

Kemampuan mengerjakan semua proses pengolahan data secara bersama antara komputer pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah maka prosesor yang lain akan mengambil alih tugasnya.


3.    Architectural Parallel Computer

Embarasingly Parallel adalah pemrograman paralel yang digunakan pada masalah-masalah yang bisa diparalelkan tanpa membutuhkan komunikasi satu sama lain. Sebenarnya pemrograman ini bisa dibilang sebagai pemrograman paralel yang ideal, karena tanpa biaya komunikasi, lebih banyak peningkatan kecepatan yang bisa dicapai. Michael J. Flynn menciptakan satu diantara sistem klasifikasi untuk komputer dan program paralel, yang dikenal dengan sebutan Taksonomi Flynn. Flynn mengelompokkan komputer dan program berdasarkan banyaknya set instruksi yang dieksekusi dan banyaknya set data yang digunakan oleh instruksi tersebut. Taksonomi dari model pemrosesan paralel dibuat berdasarkan alur instruksi dan alur data yang digunakan:

1.    SISD (Single Instruction stream, Single Data stream)
Komputer tunggal yang mempunyai satu unit kontrol, satu unit prosesor dan satu unit memori Instruksi dilaksanakan secara berurut tetapi boleh juga overlap dalam tahapan eksekusi (overlap) Satu alur instruksi didecode untuk alur data tunggal.

2.    SIMD (Single Instruction stream, Multiple Data stream)
Komputer yang mempunyai beberapa unit prosesor di bawah satu supervisi satu unit common control. Setiap prosesor menerima instruksi yang sama dari unit kontrol, tetapi beroperasi pada data yang berbeda.

3.    MISD (Multiple Instruction stream, Single Data stream)
Sampai saat ini struktur ini masih merupakan struktur teoritis dan belum ada komputer dengan model ini.

4.    MIMD (Multiple Instruction stream, Multiple Data stream)
Organisasi komputer yang memiliki kemampuan untuk memproses beberapa program dalam waktu yang sama. Pada umumnya multiprosesor dan multikomputer termasuk dalam  kategori ini.

0 komentar:

Posting Komentar